Preliminaries 1 for BCHM

Sridhar Venkatesh

Outline

(9) Nakayama-Zariski decomposition
(2) Basic Facts about Adjunction
(3) Stable Base Locus
4. Types of Models

Nakayama-Zariski decomposition

Definition-Lemma 3.3.1

$X=\mathrm{sm}$. proj, $B=$ big \mathbb{R}-divisor, $C=$ prime divisor.

$$
\sigma_{C}(B)=\inf \left\{\operatorname{mult}_{C}\left(B^{\prime}\right) \mid B \sim_{\mathbb{R}} B^{\prime} \geq 0\right\}
$$

Then, $\sigma_{C}=$ cont. function on cone of big divisors. In fact, σ_{C} extends to the boundary as follows:

$$
\sigma_{C}(D)=\lim _{\epsilon \rightarrow 0} \sigma_{C}(D+\epsilon A) \text { for } A \text { ample }
$$

For a given D, there are only finitely many C s.t. $\sigma_{C}(D)>0$.Set:

$$
\begin{aligned}
& N_{\sigma}(D)=\sum_{C} \sigma_{C}(D) C \\
& \Longrightarrow D=N_{\sigma}(D)+\left(D-N_{\sigma}(D)\right) \\
& \Longrightarrow D=\text { 'Negative' + 'Positive' }
\end{aligned}
$$

Proposition 3.3.2

'The positive part has sections'
$X=$ sm. proj, $D=$ pseudo-eff \mathbb{R}-divisor, $B=$ any big \mathbb{R}-divisor. If $P:=D-N_{\sigma}(D) \not \equiv 0$, then \exists positive k, β s.t.:

$$
h^{0}\left(\mathcal{O}_{X}(\lfloor m P\rfloor+\lfloor k B\rfloor)>\beta m \text { for all } m \gg 0\right.
$$

In particular:

$$
h^{0}\left(\mathcal{O}_{X}(\lfloor m D\rfloor+\lfloor k B\rfloor)>\beta m \text { for all } m \gg 0\right.
$$

Basic Facts about Adjunction

Definition-Lemma 3.4.1

(X, Δ) log canonical.
$S=$ normal comp of $\lfloor\Delta\rfloor$ with coeff $=1$.
$\Theta=$ Divisor on S defined by $\left(K_{X}+S\right) \mid s=K_{S}+\Theta$.
(0) $(X, \Delta) \mathrm{dlt} \Longrightarrow\left(K_{S}+\Theta\right)$ dlt.
(2) (X, Δ) plt $\Longrightarrow\left(K_{S}+\Theta\right)$ klt.
(3) $(X, \Delta=S)$ plt \Longrightarrow coeff of any D in Θ is of the form $\frac{r-1}{r}$ where $r=$ index of S at μ_{D}.
(9) (X, Δ) plt \Longrightarrow 'Adjunction behaves well under projective birational maps'.
Let $f: Y \rightarrow X$ projective birational, let Δ_{Y}, Θ_{Y} defined by:

$$
K_{Y}+\Delta_{Y}=f^{*}\left(K_{X}+\Delta\right),\left.\left(K_{Y}+\Delta_{Y}\right)\right|_{\tilde{S}}=K_{\tilde{S}}+\Theta_{Y}
$$

Then we have:

$$
\left(\left.f\right|_{\tilde{S}}\right)_{*}\left(\Theta_{Y}\right)=\Theta
$$

Stable Base Locus

Notions for \mathbb{R}-divisors

$\pi: X \rightarrow U$ projective morphism of normal varieties, $D=\mathbb{R}$-divisor on X.

Definition

(1) The real linear system associated to D over U is:

$$
|D / U|_{\mathbb{R}}:=\left\{C \text { effective } \mid C \sim_{\mathbb{R}, \pi} D\right\}
$$

(2) The stable base locus is:

$$
B(D / U):=\bigcap_{C \in|D / U|} \operatorname{Supp}(C)
$$

(3) The stable fixed divisor is the divisorial support of $B(D / U)$.
(4) The augmented base locus is:

$$
B_{+}(D / U):=B((D-\epsilon A) / U) \text { for } \epsilon \ll 1, A \text { ample }
$$

Remark

(1) Agrees with the usual definition when D is a \mathbb{Z}-divisor. (Idea: Given $x \in X$, need to prove:
$\exists \mathbb{R}$-divisor $D_{\mathbb{R}} \in B(D / U)_{\mathbb{R}}$ not passing thru $x \Longrightarrow$
$\exists \mathrm{Q}$-divisor $D_{\mathrm{Q}} \in B(D / U)_{\mathrm{Q}}$ not passing thru x
We do the following:
Look at a suitable subcone $W \subset \operatorname{WDiv}_{\mathbb{R}}(X)$ of all $D^{\prime} \in|D / U|_{\mathbb{R}}$ not passing thru x.
W will be generated by finitely many \mathbb{Z}-divisors, so W is a rational polyhedron.
W is non-empty since we have $D_{\mathbb{R}} \in W$. Thus W has a Q-point i.e. \exists a Q -divisor $D_{\mathrm{Q}} \in B(D / U)_{\mathrm{Q}}$ not passing thru x.
(2) Like in the Q-divisor case, these are only defined as closed subsets.

Useful Lemma

We're working towards decomposing every divisor as 'Movable + Fixed'.

Lemma 3.5.6

Let $D \geq 0$ be an \mathbb{R}-divisor.
Assume $\exists D^{\prime} \in|D / U|_{\mathbb{R}}$ which has no common components with D. Then we can find $D^{\prime \prime} \in|D / U|_{\mathbb{R}}$ s.t.:

A multiple of every component of $D^{\prime \prime}$ is mobile.
This is saying: If you can move D to avoid the components of D, then you can move D to make every component mobile.

Every Divisor = Movable + Fixed

Proposition 3.5.4
Say $D \geq 0$. Then $\exists \mathbb{R}$-divisors $M, F \geq 0$ s.t.:
(-) $D \sim_{\mathbb{R}, \pi} M+F$.
(2) $\operatorname{Supp}(F) \subset B(D / U)$.
(c) If B is a component of M, then some multiple of B is mobile.

Thus, ' $D=$ Movable + Fixed'.

Proof

Write $D=M+F$ where:

- F is contained in $B(D / U)$.
- No component of M is contained in $B(D / U)$.

Call a prime divisor bad if no multiple is mobile.

Proof of Proposition

Proof cont.

We prove by induction on the number of bad components of M.

- Let B be a bad component of M. We will find $D^{\prime} \in|D / U|$ s.t.

Bad components of $M^{\prime} \subset$ Bad components of M. B is no longer a component of D^{\prime}.

- $B \not \subset B(D / U)$ and so, $\exists D_{1} \in|D / U|_{\mathbb{R}}$ s.t. $B \not \subset D_{1}$.
- Take $E=D \wedge D_{1}$ (common components of D and D_{1}). Then $D-E \sim_{\mathbb{R}} D_{1}-E$ are effective and have no common components.
- Lemma \Longrightarrow Get a $D^{\prime \prime} \in|(D-E) / U|$ which does not have bad components.
- \therefore Only bad components of $D^{\prime \prime}+E \in|D / U|$ are among E, hence among D. Also, $B \not \subset E$. Done!

Types of Models

Negativity Lemma

Lemma 3.6.2

$f: Y \rightarrow X$ be a proj birational map of normal quasi-proj varieties.
$D=\mathbb{R}$-Cartier divisor on Y s.t. $-D$ is f-nef. Write:

$$
D=D_{\text {horizontal }}+D_{f \text {-exceptional }}
$$

Then:

$$
D_{\text {horizontal }} \geq 0 \Longrightarrow D_{f \text {-exceptional }} \geq 0
$$

We keep cutting by hyperplanes in X and reduce to $X=$ surface. There, it follows from the Hodge Index Theorem.

$$
\begin{aligned}
& \text { Example } \\
& f: \mathrm{Bl}_{0} \mathrm{P}^{2} \rightarrow \mathbb{P}^{2} . \text { Take } D=E . \\
& E^{2}=-1 \text { and } C . E \geq 0 \text { for every other divisor } C \text {. }
\end{aligned}
$$

D-non-positive and D-negative

Definition

$\phi: X \rightarrow Y$ proper birational contraction of normal quasi proj. var. $D=\mathbb{R}$-Cartier divisor on X s.t. $D^{\prime}=\phi_{*} D$ is also \mathbb{R}-Cartier.

- We say ϕ is D-non-positive if for some common resolution $p: W \rightarrow X, q: W \rightarrow Y$, we have:

$$
p^{*} D=q^{*} D^{\prime}+E
$$

where E is effective, q-exceptional.

- We say ϕ is D-negative if additionally $\operatorname{Supp}(E)$ contains the strict transform of the ϕ-exceptional divisors.

By Negativity Lemma, can replace ' E effective, q-exceptional' with ' $p_{*} E$ effective'.

Models

$\pi: X \rightarrow U$ proj. morphism of normal varieties, $D=\mathbb{R}$-Cartier on X. Say that a birational contraction $f: X \rightarrow Y$ over U is a semi-ample model of D over U if:

- Y is normal and projective over U.
- f is D-non-positive.
- $f_{*} D$ is semiample over U

Say that a rational map $g: X \rightarrow Z$ over U is the ample model of D over U if:

- Z is normal and projective over U.
- If $p: W \rightarrow X$ and $q: W \rightarrow Z$ resolve g, then q is a contraction.
- \exists ample divisor H over U on Z s.t. we may write $p^{*} D \sim_{\mathbb{R}, \pi} q^{*} H+E$ where $E \geq 0$ and E lies in the stable base locus of $p^{*} D$ over U.

Facts about semi-ample and ample models

(1) 'Ample models are unique': If $g_{i}: X \rightarrow X_{i}$ are two ample models, then \exists an isomorphism $\chi: X_{1} \rightarrow X_{2}$ s.t. $g_{2}=\chi \circ g_{1}$.

- Let $g: Y \rightarrow X$ resolve the indeterminacies of g_{i} and let $f_{i}=g_{i} \circ g$ be the induced contractions.
- Have: $g^{*} D=f_{i}^{*} H_{i}+E_{i}$ and E_{i} lies in the stable base locus of $g^{*} D$.
- $E_{1} \subset B\left(g^{*} D / U\right)=B\left(\left(f_{2}^{*} H_{2}+E_{2}\right) / U\right) \subset E_{2}$ (as H is ample).
- Thus $E_{1} \leq E_{2}$. By symmetry, $E_{1}=E_{2}$.
- Thus $f_{1}^{*} H_{1} \sim_{\mathbb{R}, \pi} f_{2}^{*} H_{2}$. Thus, $f_{1}=f_{2}$ as they contract the same curves.
(2) Suppose $g: X \rightarrow Z$ is an ample model, then we can write $p^{*} D \sim_{\mathbb{R}, \pi} q^{*} H+E$ where $E \geq 0$ and if F is any p-exceptional divisor whose centre lies in the indeterminacy locus of g then F is contained in $\operatorname{Supp}(E)$.
- This is an application of Negativity Lemma.
(3) 'Semiample model exists \Longrightarrow Ample model exists': If
$f: X \rightarrow Y$ is a semiample model of D over U, then \exists a contraction
$h: Y \rightarrow Z$ s.t. $h \circ f: X \rightarrow Z$ is an ample model. Additionally, $f_{*} D \sim_{\mathbb{R}, \pi} h^{*} H$.
- Remember $f_{*} D$ is semiample over U.
- Let $h: Y \rightarrow Z$ be the morphism over U defined by $f_{*} D$. We can check that this gives us the ample model for X over U.
(4) 'In the birational case, ample model is exactly analogous to semiample model': If $f: X \rightarrow Y$ is a birational contraction over U, then f is the ample model $\Longleftrightarrow f$ is a semiample model and $f_{*} D$ is ample over U.
- (\Longleftarrow) By (3), we know we can contract $h: Y \rightarrow Z$ to get an ample model Z. Additionally, $f_{*} D \sim_{\mathbb{R}, \pi} h^{*} H$.
- But $f_{*} D$ is ample over U and so $h^{*} H$ is ample over U.
- Pullback under contraction h is ample $\Longrightarrow h$ doesn't contract any curves i.e. h is an isomorphism.

More models

$\pi: X \rightarrow U, Y \rightarrow U$ be proj. morphisms of normal, quasi-proj. varieties.
Let $\phi: X \rightarrow Y$ be a birational contraction.
Assume $K_{X}+\Delta \log$ canonical. Set $\Gamma=\phi_{*} \Delta$.
(1) Y is a log terminal model for $K_{X}+\Delta$ over U if ϕ is $\left(K_{X}+\Delta\right)$-negative, $K_{Y}+\Gamma$ is dlt and nef over U, and Y is Q-factorial.
(Modern name = Minimal Model)
(2) Y is a weak log canonical model for $K_{X}+\Delta$ over U if ϕ is $\left(K_{X}+\Delta\right)$-non-positive, and $K_{Y}+\Gamma$ is nef over U.
(Modern $=$ Minimal Model + Flops)
(3) Y is the log canonical model for $K_{X}+\Delta$ over U if ϕ is the ample model of $K_{X}+\Delta$ over U.
(Modern name = Ample Model)
(4) Y is a good minimal model if $K_{Y}+\Gamma$ is semiample.

Diagram of different models
$\left(K_{x_{\text {min }}} n e f\right)$
$x^{K_{x}-\text {-neg }} x_{1} \ldots \ldots \ldots . \rightarrow X_{\text {min }} \quad(\log$ terminal model)

$$
\begin{aligned}
& \text { (Assuming } \\
& R\left(x, K_{x}\right) \text { is } \\
& \text { fin. gen.) }
\end{aligned}
$$

$\left(+K_{X_{\text {min }}}\right.$ big Abundance
Semiample model)
X amp (ample model/
Canonical model)

$$
\begin{array}{ll}
X \text { Flop } \rightarrow X_{\min }^{\prime} & {[\text { Weak } k \text { model }} \\
\ddots & \text { Flo must happen } \\
K_{x} \text {-non-positive } & \text { away from MMP loci }
\end{array}
$$

More lemmas about these models

Lemma 3.6.8

'Weak Ic models and It models are preserved under taking positive multiples of $K_{X}+\Delta$.'
$\phi: X \rightarrow Y$ be a birational contraction over U.
(X, Δ) and $\left(X, \Delta^{\prime}\right)$ two log pairs. Set $\Gamma:=f_{*} \Delta$ and $\Gamma^{\prime}:=f_{*} \Delta^{\prime}$.
$\mu>0$ positive real number.

- $K_{X}+\Delta, K_{X}+\Delta^{\prime}$ lc. $\left(K_{X}+\Delta^{\prime}\right) \sim_{\mathbb{R}, \pi} \mu\left(K_{X}+\Delta\right)$.
ϕ weak Ic model for $K_{X}+\Delta \Longleftrightarrow \phi$ weak Ic model for $K_{X}+\Delta^{\prime}$
- $K_{X}+\Delta, K_{X}+\Delta^{\prime}$ klt. $\left(K_{X}+\Delta^{\prime}\right) \equiv_{\pi} \mu\left(K_{X}+\Delta\right)$. ϕ It model for $K_{X}+\Delta \Longleftrightarrow \phi$ It model for $K_{X}+\Delta^{\prime}$

For example, both conditions say $K_{Y}+\Gamma$ nef $\Longleftrightarrow K_{Y}+\Gamma^{\prime}$ nef.

Lemma 3.6.9

'Composition of It models is a It model.'

$\phi: X \rightarrow Y$ It model of $(X, \Delta), \varphi: Y \rightarrow Z$ It model of $\left(Y, \phi_{*} \Delta\right)$. Then:

$$
\eta:=\varphi \circ \phi \text { It model of }(X, \Delta)
$$

Proof

- Clear that η is a birational contraction, Z is \mathbb{Q}-factorial and $K_{Z}+\eta_{*} Z$ is dlt and nef over U.
- Only thing to show is that η is $K_{X}+\Delta$-negative.
(cont. in next page)

Proof cont.

Take a common resolution:

ϕ It model $\Longrightarrow \phi$ is $K_{X}+\Delta$-negative \Longrightarrow
$p^{*}\left(K_{X}+\Delta\right)-q^{*}\left(K_{Y}+\phi_{*} \Delta\right)=E_{1} \geq 0$, and $\operatorname{Supp}\left(E_{1}\right)=\operatorname{Exc}(\phi)$.
φ lt model $\Longrightarrow \varphi$ is $K_{Y}+\phi_{*} \Delta$-negative \Longrightarrow
$q^{*}\left(K_{Y}+\phi_{*} \Delta\right)-r^{*}\left(K_{Z}+\eta_{*} \Delta\right)=E_{2} \geq 0$, and $\operatorname{Supp}\left(E_{2}\right)=\operatorname{Exc}(\varphi)$.

$$
\begin{aligned}
p^{*}\left(K_{X}+\Delta\right)-r^{*}\left(K_{Z}+\eta_{*} \Delta\right) & =p^{*}\left(K_{X}+\Delta\right)-q^{*}\left(K_{Y}+\phi_{*} \Delta\right) \\
& +q^{*}\left(K_{Y}+\phi_{*} \Delta\right)-r^{*}\left(K_{Z}+\eta_{*} \Delta\right) \\
& =E_{1}+E_{2} \geq 0
\end{aligned}
$$

And $\operatorname{Supp}\left(E_{1}+E_{2}\right)=\operatorname{Exc}(\eta)$. Thus η is $K_{X}+\Delta$-negative.

Lemma 3.6.10

'Suitable It model of a resolution of X is also a It model of X '
(X, Δ) klt with Δ big over U.
$f: Z \rightarrow X$ any \log resolution of (X, Δ). Write:

$$
K_{z}+\Phi_{0}=f^{*}\left(K_{X}+\Delta\right)+E
$$

where E, Φ_{0} effective and have no common components, $f_{*} \Phi_{0}=\Delta$ and E is exceptional.
Let $F \geq 0$ be any divisor with $\operatorname{Supp}(F)=\operatorname{Exc}(f)$.
If $\eta>0$ is sufficiently small and $\Phi=\Phi_{0}+\eta F$, then $K_{z}+\Phi$ is klt and Φ is big over U. Moreover:

$$
Z \xrightarrow{Z} W \text { It model of } K_{z}+\Phi \Longrightarrow X \longrightarrow W \text { It model for } K_{X}+\Delta
$$

Lemma 3.6.11

Fix $\phi: X \rightarrow Y$. Then:
$\{\Delta \mid \phi$ is a weak Ic model for $(X, \Delta)\}$

$$
=\overline{\{\Delta \mid \phi \text { is an ample model for }(X, \Delta)\}}
$$

$X=$ Q-factorial. (X, Δ) dit. Write $\Delta=S+B$ where $S:=\lfloor\Delta\rfloor$. $\phi: X \rightarrow Y$ weak Ic model of (X, Δ).
Suppose that the components of B span $\left(\operatorname{WDiv}_{\mathbb{R}}(X) / \equiv\right)$.
Let V be any finite dimensional affine subspace of $\mathrm{WDiv}_{\mathbb{R}}(X)$ which contains the subspace generated by the components of B. Then:

$$
\mathcal{W}_{\phi, S, \pi}(V)=\overline{\mathcal{A}_{\phi, S, \pi}(V)}
$$

$$
\begin{array}{r}
\mathcal{W}_{\phi, S, \pi}(V):=\left\{\Delta^{\prime}=S+B^{\prime} \text { for } B^{\prime} \in V, B^{\prime} \geq 0 \mid K_{X}+\Delta^{\prime}\right. \text { is Ic, pseudo-eff, } \\
\left.\phi \text { is a weak Ic model for }\left(X, \Delta^{\prime}\right)\right\}
\end{array}
$$

$\mathcal{A}_{\phi, S, \pi}(V)$ is defined similarly for ample models.

