Preliminaries 1 for BCHM

Sridhar Venkatesh

э

イロト イヨト イヨト イヨト

Outline

Nakayama-Zariski decomposition

-

Nakayama-Zariski decomposition

э

Definition-Lemma 3.3.1

X =sm. proj, B =big \mathbb{R} -divisor, C =prime divisor.

$$\sigma_{\mathcal{C}}(\mathcal{B}) = \inf\{ \operatorname{\mathsf{mult}}_{\mathcal{C}}(\mathcal{B}') \mid \mathcal{B} \sim_{\mathbb{R}} \mathcal{B}' \ge 0 \}$$

Then, $\sigma_C = \text{cont.}$ function on cone of big divisors. In fact, σ_C extends to the boundary as follows:

$$\sigma_{\mathcal{C}}(\mathcal{D}) = \lim_{\epsilon \to 0} \sigma_{\mathcal{C}}(\mathcal{D} + \epsilon \mathcal{A})$$
 for \mathcal{A} ample

For a given *D*, there are only finitely many *C* s.t. $\sigma_C(D) > 0$.Set:

$$\begin{split} & \textit{N}_{\sigma}(\textit{D}) = \sum_{\textit{C}} \sigma_{\textit{C}}(\textit{D})\textit{C} \\ \implies \textit{D} = \textit{N}_{\sigma}(\textit{D}) + (\textit{D} - \textit{N}_{\sigma}(\textit{D})) \\ \implies \textit{D} = `Negative' + `Positive' \\ \end{split}$$

A (10) A (10)

Proposition 3.3.2

'The positive part has sections'

 $X = \text{sm. proj}, D = \text{pseudo-eff } \mathbb{R}$ -divisor, $B = \text{any big } \mathbb{R}$ -divisor. If $P := D - N_{\sigma}(D) \neq 0$, then \exists positive k, β s.t.:

 $h^{0}(\mathcal{O}_{X}(\lfloor mP \rfloor + \lfloor kB \rfloor) > \beta m \text{ for all } m \gg 0$

In particular:

 $h^0(\mathcal{O}_X(\lfloor mD \rfloor + \lfloor kB \rfloor) > \beta m \text{ for all } m \gg 0$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Basic Facts about Adjunction

2

イロト イ団ト イヨト イヨト

Definition-Lemma 3.4.1

- (X, Δ) log canonical.
- $S = normal comp of \lfloor \Delta \rfloor$ with coeff = 1.
- $\Theta = \text{Divisor on } S \text{ defined by } (K_X + S)|_S = K_S + \Theta.$

$$(X, \Delta) \text{ dlt} \implies (K_S + \Theta) \text{ dlt}.$$

- $(X, \Delta) \text{ plt } \implies (K_{\mathcal{S}} + \Theta) \text{ klt.}$
- $(X, \Delta = S)$ plt \implies coeff of any *D* in Θ is of the form $\frac{r-1}{r}$ where r = index of *S* at μ_D .
- (3) (X, Δ) plt \implies 'Adjunction behaves well under projective birational maps'.

Let $f: Y \to X$ projective birational, let Δ_Y, Θ_Y defined by:

$$K_Y + \Delta_Y = f^*(K_X + \Delta), (K_Y + \Delta_Y)|_{\tilde{S}} = K_{\tilde{S}} + \Theta_Y$$

Then we have:

$$(f|_{\tilde{S}})_*(\Theta_Y) = \Theta$$

Stable Base Locus

æ

イロン イ理 とく ヨン イヨン

Notions for **R**-divisors

 $\pi: X \to U$ projective morphism of normal varieties, $D = \mathbb{R}$ -divisor on X.

Definition

• The real linear system associated to D over U is:

$$|D/U|_{\mathbb{R}} := \{C \text{ effective } | C \sim_{\mathbb{R},\pi} D\}$$

The stable base locus is:

$$B(D/U) := \bigcap_{C \in |D/U|} Supp(C)$$

- **③** The **stable fixed divisor** is the divisorial support of B(D/U).
- The augmented base locus is:

$$B_+(D/U) := B((D - \epsilon A)/U)$$
 for $\epsilon \ll 1$, A ample

э

・ロト ・ 四ト ・ ヨト ・ ヨト

Remark

• Agrees with the usual definition when *D* is a \mathbb{Z} -divisor. (Idea: Given $x \in X$, need to prove:

 $\exists \ \mathbb{R} \text{-divisor } D_{\mathbb{R}} \in B(D/U)_{\mathbb{R}} \text{ not passing thru } x \implies$

 $\exists \mathbb{Q}$ -divisor $D_{\mathbb{Q}} \in B(D/U)_{\mathbb{Q}}$ not passing thru *x*

We do the following:

- ► Look at a suitable subcone $W \subset WDiv_{\mathbb{R}}(X)$ of all $D' \in |D/U|_{\mathbb{R}}$ not passing thru *x*.
- W will be generated by finitely many \mathbb{Z} -divisors, so W is a rational polyhedron.
- *W* is non-empty since we have $D_{\mathbb{R}} \in W$. Thus *W* has a Q-point i.e. \exists a Q-divisor $D_{\mathbb{Q}} \in B(D/U)_{\mathbb{Q}}$ not passing thru *x*.
- Like in the Q-divisor case, these are only defined as closed subsets.

Useful Lemma

We're working towards decomposing every divisor as 'Movable + Fixed'.

Lemma 3.5.6 Let $D \ge 0$ be an \mathbb{R} -divisor. Assume $\exists D' \in |D/U|_{\mathbb{R}}$ which has no common components with D. Then we can find $D'' \in |D/U|_{\mathbb{R}}$ s.t.:

A multiple of every component of D'' is mobile.

This is saying: If you can move D to avoid the components of D, then you can move D to make every component mobile.

同下 イヨト イヨト

Every Divisor = Movable + Fixed

Proposition 3.5.4

Say $D \ge 0$. Then $\exists \mathbb{R}$ -divisors $M, F \ge 0$ s.t.:

$$D \sim_{\mathbb{R},\pi} M + F.$$

2 Supp $(F) \subset B(D/U)$.

If *B* is a component of *M*, then some multiple of *B* is mobile.

Thus, 'D = Movable + Fixed'.

Proof

Write D = M + F where:

• *F* is contained in B(D/U).

• No component of *M* is contained in B(D/U).

Call a prime divisor **bad** if no multiple is mobile.

3

イロト イポト イヨト イヨト

Proof of Proposition

Proof cont.

We prove by induction on the number of bad components of *M*.

- Let *B* be a bad component of *M*. We will find $D' \in |D/U|$ s.t.
 - Bad components of $M' \subset$ Bad components of M.
 - B is no longer a component of D'.
- $B \not\subset B(D/U)$ and so, $\exists D_1 \in |D/U|_{\mathbb{R}}$ s.t. $B \not\subset D_1$.
- Take *E* = *D* ∧ *D*₁ (common components of *D* and *D*₁). Then
 D − *E* ∼_ℝ *D*₁ − *E* are effective and have no common components.
- Lemma \implies Get a $D'' \in |(D E)/U|$ which does not have bad components.
- ∴ Only bad components of D" + E ∈ |D/U| are among E, hence among D. Also, B ∉ E. Done!

3

イロト イポト イヨト イヨト

Types of Models

æ

イロト イヨト イヨト イヨト

Negativity Lemma

Lemma 3.6.2

 $f: Y \to X$ be a proj birational map of normal quasi-proj varieties. $D = \mathbb{R}$ -Cartier divisor on Y s.t. -D is *f*-nef. Write:

 $D = D_{\text{horizontal}} + D_{f\text{-exceptional}}$

Then:

$$D_{ ext{horizontal}} \geq 0 \implies D_{ ext{f-exceptional}} \geq 0$$

We keep cutting by hyperplanes in X and reduce to X = surface. There, it follows from the Hodge Index Theorem.

Example $f: Bl_0 \mathbb{P}^2 \to \mathbb{P}^2$. Take D = E. $E^2 = -1$ and $C.E \ge 0$ for every other divisor C.

D-non-positive and D-negative

Definition

 $\phi: X \dashrightarrow Y$ proper birational contraction of normal quasi proj. var. $D = \mathbb{R}$ -Cartier divisor on X s.t. $D' = \phi_* D$ is also \mathbb{R} -Cartier.

• We say ϕ is *D*-non-positive if for some common resolution $p: W \to X, q: W \to Y$, we have:

$$p^*D = q^*D' + E$$

where *E* is effective, *q*-exceptional.

We say φ is *D*-negative if additionally Supp(*E*) contains the strict transform of the φ-exceptional divisors.

By Negativity Lemma, can replace '*E* effective, *q*-exceptional' with ' p_*E effective'.

< 日 > < 同 > < 回 > < 回 > < □ > <

Models

 $\pi: X \to U$ proj. morphism of normal varieties, $D = \mathbb{R}$ -Cartier on X. Say that a birational contraction $f: X \dashrightarrow Y$ over U is a **semi-ample model** of D over U if:

- Y is normal and projective over U.
- f is D-non-positive.
- *f*_{*}*D* is semiample over *U*

Say that a rational map $g: X \rightarrow Z$ over U is the **ample model** of D over U if:

- Z is normal and projective over U.
- If $p: W \to X$ and $q: W \to Z$ resolve g, then q is a contraction.
- \exists ample divisor *H* over *U* on *Z* s.t. we may write $p^*D \sim_{\mathbb{R},\pi} q^*H + E$ where $E \ge 0$ and *E* lies in the stable base locus of p^*D over *U*.

・ロン ・四 と ・ ヨ と ・ ヨ

Facts about semi-ample and ample models

- **'Ample models are unique':** If $g_i : X \dashrightarrow X_i$ are two ample models, then \exists an isomorphism $\chi : X_1 \rightarrow X_2$ s.t. $g_2 = \chi \circ g_1$.
 - Let g : Y → X resolve the indeterminacies of g_i and let f_i = g_i ∘ g be the induced contractions.
 - Have: $g^*D = f_i^*H_i + E_i$ and E_i lies in the stable base locus of g^*D .
 - ► $E_1 \subset B(g^*D/U) = B((f_2^*H_2 + E_2)/U) \subset E_2$ (as *H* is ample).
 - Thus $E_1 \leq E_2$. By symmetry, $E_1 = E_2$.
 - Thus f₁^{*}H₁ ∼_{ℝ,π} f₂^{*}H₂. Thus, f₁ = f₂ as they contract the same curves.
- Suppose g : X → Z is an ample model, then we can write p*D ~_{R,π} q*H + E where E ≥ 0 and if F is any p-exceptional divisor whose centre lies in the indeterminacy locus of g then F is contained in Supp(E).
 - This is an application of Negativity Lemma.

- **③** 'Semiample model exists \implies Ample model exists': If $f: X \dashrightarrow Y$ is a semiample model of *D* over *U*, then ∃ a contraction $h: Y \rightarrow Z$ s.t. $h \circ f: X \dashrightarrow Z$ is an ample model. Additionally, $f_*D \sim_{\mathbb{R},\pi} h^*H$.
 - Remember f_*D is semiample over U.
 - Let *h* : *Y* → *Z* be the morphism over *U* defined by *f*_{*}*D*. We can check that this gives us the ample model for *X* over *U*.
- 'In the birational case, ample model is exactly analogous to semiample model': If $f: X \rightarrow Y$ is a birational contraction over U, then f is the ample model $\iff f$ is a semiample model and f_*D is ample over U.
 - (⇐=) By (3), we know we can contract h: Y → Z to get an ample model Z. Additionally, f_{*}D ~_{ℝ,π} h^{*}H.
 - But f_*D is ample over U and so h^*H is ample over U.
 - Pullback under contraction h is ample model h doesn't contract any curves i.e. h is an isomorphism.

3

イロト 不得 トイヨト イヨト

More models

 $\pi: X \to U, Y \to U$ be proj. morphisms of normal, quasi-proj. varieties. Let $\phi: X \dashrightarrow Y$ be a birational contraction. Assume $K_X + \Delta$ log canonical. Set $\Gamma = \phi_* \Delta$.

• Y is a **log terminal model** for $K_X + \Delta$ over U if ϕ is $(K_X + \Delta)$ -negative, $K_Y + \Gamma$ is dlt and nef over U, and Y is Q-factorial.

(Modern name = Minimal Model)

- Y is a weak log canonical model for K_X + Δ over U if φ is (K_X + Δ)-non-positive, and K_Y + Γ is nef over U.
 (Modern = Minimal Model + Flops)
- Y is the log canonical model for K_X + Δ over U if φ is the ample model of K_X + Δ over U.
 (Modern name = Ample Model)
- Y is a good minimal model if $K_Y + \Gamma$ is semiample.

(日) (日) (日) (日) (日)

More lemmas about these models

Lemma 3.6.8

'Weak Ic models and It models are preserved under taking positive multiples of $K_X + \Delta$.'

 $\phi : X \dashrightarrow Y$ be a birational contraction over U. (X, Δ) and (X, Δ') two log pairs. Set $\Gamma := f_*\Delta$ and $\Gamma' := f_*\Delta'$. $\mu > 0$ positive real number.

• $K_X + \Delta$, $K_X + \Delta' \text{ lc. } (K_X + \Delta') \sim_{\mathbb{R},\pi} \mu(K_X + \Delta)$.

 ϕ weak lc model for $K_X + \Delta \iff \phi$ weak lc model for $K_X + \Delta'$

• $K_X + \Delta$, $K_X + \Delta'$ klt. $(K_X + \Delta') \equiv_{\pi} \mu(K_X + \Delta)$.

 ϕ It model for $K_X + \Delta \iff \phi$ It model for $K_X + \Delta'$

For example, both conditions say $K_Y + \Gamma$ nef $\iff K_Y + \Gamma'$ nef.

Lemma 3.6.9

'Composition of It models is a It model.'

 $\phi: X \dashrightarrow Y$ It model of (X, Δ) , $\varphi: Y \dashrightarrow Z$ It model of $(Y, \phi_* \Delta)$. Then:

 $\eta := \varphi \circ \phi$ It model of (X, Δ)

Proof

• Clear that η is a birational contraction, Z is Q-factorial and $K_Z + \eta_* Z$ is dlt and nef over U.

• Only thing to show is that η is $K_X + \Delta$ -negative.

(cont. in next page)

Proof cont.

Take a common resolution:

$$\begin{aligned} \phi \text{ It model} &\implies \phi \text{ is } K_X + \Delta \text{-negative} \implies \\ p^*(K_X + \Delta) - q^*(K_Y + \phi_* \Delta) = E_1 \ge 0, \text{ and } \text{Supp}(E_1) = \text{Exc}(\phi). \\ \phi \text{ It model} &\implies \phi \text{ is } K_Y + \phi_* \Delta \text{-negative} \implies \\ q^*(K_Y + \phi_* \Delta) - r^*(K_Z + \eta_* \Delta) = E_2 \ge 0, \text{ and } \text{Supp}(E_2) = \text{Exc}(\phi). \\ p^*(K_X + \Delta) - r^*(K_Z + \eta_* \Delta) = p^*(K_X + \Delta) - q^*(K_Y + \phi_* \Delta) \\ &\quad + q^*(K_Y + \phi_* \Delta) - r^*(K_Z + \eta_* \Delta) \\ &= E_1 + E_2 \ge 0 \end{aligned}$$

And Supp $(E_1 + E_2) = \text{Exc}(\eta)$. Thus η is $K_X + \Delta$ -negative.

Lemma 3.6.10

'Suitable It model of a resolution of X is also a It model of X'

- (X, Δ) klt with Δ big over U.
- $f: Z \to X$ any log resolution of (X, Δ) . Write:

$$K_Z + \Phi_0 = f^*(K_X + \Delta) + E$$

where E, Φ_0 effective and have no common components, $f_*\Phi_0 = \Delta$ and E is exceptional.

Let $F \ge 0$ be any divisor with Supp(F) = Exc(f).

If $\eta > 0$ is sufficiently small and $\Phi = \Phi_0 + \eta F$, then $K_Z + \Phi$ is klt and Φ is big over *U*. Moreover:

 $Z \dashrightarrow W$ It model of $K_Z + \Phi \implies X \dashrightarrow W$ It model for $K_X + \Delta$.

3

ヘロア ヘロア ヘヨア ・

Lemma 3.6.11 Fix ϕ : X ---> Y. Then:

 $\{\Delta \mid \phi \text{ is a weak lc model for } (X, \Delta)\}$

 $=\overline{\{\Delta \mid \phi \text{ is an ample model for } (X, \Delta)\}}$

 $X = \mathbb{Q}$ -factorial. (X, Δ) dlt. Write $\Delta = S + B$ where $S := \lfloor \Delta \rfloor$. $\phi : X \dashrightarrow Y$ weak lc model of (X, Δ) . Suppose that the components of *B* span (WDiv_R(X)/ \equiv). Let *V* be any finite dimensional affine subspace of WDiv_R(X) which contains the subspace generated by the components of *B*. Then:

$$\mathcal{W}_{\phi,\mathcal{S},\pi}(\mathcal{V}) = \overline{\mathcal{A}_{\phi,\mathcal{S},\pi}(\mathcal{V})}$$

・ロト ・ 四ト ・ ヨト ・ ヨト …

$$\begin{split} \mathcal{W}_{\phi,\mathcal{S},\pi}(V) := \{\Delta' = \mathcal{S} + \mathcal{B}' \text{ for } \mathcal{B}' \in V, \mathcal{B}' \geq 0 \mid \mathcal{K}_X + \Delta' \text{ is lc, pseudo-eff,} \\ \phi \text{ is a weak lc model for } (X, \Delta') \} \end{split}$$

 $\mathcal{A}_{\phi, S, \pi}(V)$ is defined similarly for ample models.

A D A A B A A B A A B A B B